Failure Mechanism of Compressor Blade Protective Coatings under Thermal Salt Alternation

LUO Chen, ZHANG Anqin, YANG Liyuan, ZHOU Yu, ZHAO Mingliang, JIANG Guojie, ZHAN Zhongwei

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (10) : 43-51.

PDF(2672 KB)
PDF(2672 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (10) : 43-51. DOI: 10.7643/ issn.1672-9242.2025.10.006
Aviation and Aerospace Equipment

Failure Mechanism of Compressor Blade Protective Coatings under Thermal Salt Alternation

  • LUO Chen1, ZHANG Anqin2, YANG Liyuan1, ZHOU Yu1, ZHAO Mingliang1, JIANG Guojie1, ZHAN Zhongwei1
Author information +
History +

Abstract

The work aims to study the effect of atmospheric environment operating cycles on the degradation of protective coatings on compressor blades. Experiments simulating the coupling effect of marine environments and high temperature were designed and property tests were conducted on compressor blade specimens after different test time, to analyze the degree of influence of corrosive environments on coating structure and composition, study the corrosion damage mechanism of protective coatings under the coupling effect of marine environments and high temperature, and obtain the degradation law of protective coating damage degree over time. The necessary conditions for the failure of the inorganic salt aluminum coating on compressor blades were the infiltration of environmental moisture and electrolyte into the TWL-12 layer and the stainless steel interface, and severe corrosion of metal aluminum particles. The cathodic protection current density acting on stainless steel decreased, and stainless steel began to corrode under the action of electrolyte and Cl. The damage area of the protective coating increased with the extension of the test time, and platform characteristics appeared in the second and third cycles of simulated accelerated testing, followed by rapid expansion thereafter. Compared with factors such as moisture, chloride ions, and temperature, the failure process of the inorganic salt aluminum coating on compressor blades is more affected by pH. Therefore, certain measures need to be taken when applying it to corrosion protection of shipborne aircraft engines.

Key words

engine / corrosion protection / coatings / compressor blade / marine environment / failure

Cite this article

Download Citations
LUO Chen, ZHANG Anqin, YANG Liyuan, ZHOU Yu, ZHAO Mingliang, JIANG Guojie, ZHAN Zhongwei. Failure Mechanism of Compressor Blade Protective Coatings under Thermal Salt Alternation[J]. Equipment Environmental Engineering. 2025, 22(10): 43-51 https://doi.org/10.7643/ issn.1672-9242.2025.10.006

References

[1] KETCHAM S J.Accelerated Laboratory Corrosion Test for Materials and Finishes Used in Naval Aircraft[R]. Pennsylvania: Naval Air Development Center, 1977.
[2] TANKINS E, KOZOI J, LEE E W.Shipboard Exposure Testing of Aircraft Materials Aboard Uss Ranger[J]. The Journal of the Minerals, Metals & Materials Society,1994, 47(9): 17-22
[3] 王素华, 王秀霞, 樊庆和. 舰载直升机的腐蚀与防护[J]. 海军航空工程学院学报, 2004, 19(3): 343-345.
WANG S H, WANG X X, FAN Q H.Corrosion and Protection of the Shipboard-Helicopter[J]. Journal of Naval Aeronautical Engineering Institute, 2004, 19(3): 343-345.
[4] TANKINS E, KOZOL J, LEE E W.The Shipboard Exposure Testing of Aircraft Materials[J]. JOM, 1995, 47(9): 40-44.
[5] LEE E W, ABOURIALY N, KOZOL J.Aircraft Carrier Exposure Testing of Aircraft Materials[R]. Maryland: Naval Air Warfare Center, 2004.
[6] MORRIS A W.Corrosion Control Test Method for Avionic Components[R]. Pennsylvania: Naval Air Development Center, 1981.
[7] 霍武军, 孙护国. 海航发动机压气机叶片腐蚀与防护措施[J]. 航空工程与维修, 2002(6): 39-41.
HUO W J, SUN H G.Corrosion and Precaution for Blades of Aero-Engine Compressor in the Navy Air Arm[J]. Aviation Engineerging & Mainienance, 2002(6): 39-41.
[8] 刘治国, 查小晖, 李宇涛, 等. 某新型航空发动机压气机叶片服役环境适应性研究初探[J]. 装备环境工程, 2021, 18(6): 1-8.
LIU Z G, ZHA X H, LI Y T, et al.Study on Environmental Adaptability of the Blade of a New Aero-Engine Gas Compressor[J]. Equipment Environmental Engineering, 2021, 18(6): 1-8.
[9] 姜涛, 李春光, 张兵. 发动机压气机转子叶片断裂失效分析[J]. 装备环境工程, 2011, 8(3): 18-22.
JIANG T, LI C G, ZHANG B.Fracture Analysis of Compressor Rotor Blade in Engine[J]. Equipment Environmental Engineering, 2011, 8(3): 18-22.
[10] SURESH KUMAR M, SUJATA M, VENKATASWAMY M A, et al.Coating Failure in Compressor Rotor Blades of an Aeroengine[J]. Engineering Failure Analysis, 2007, 14(5): 913-919.
[11] 孙晓峰, 周开河, 宋巍, 等. 一种耐高温防腐涂料的防护机制研究[J]. 中国材料进展, 2022, 41(11): 947-953.
SUN X F, ZHOU K H, SONG W, et al.Study on the Protection Mechanism of a HighTemperature Resistant Anticorrosive Coating[J]. Materials China, 2022, 41(11): 947-953.
[12] 闫章铭. 无机磷酸盐涂层在苛刻环境下耐蚀耐磨性能研究[D]. 郑州: 华北水利水电大学, 2024.
YAN Z M.Study on Corrosion and Wear Resistance of Inorganic Phosphate Coatings in Severe Environment[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2024.
[13] 杨康, 王国志, 王志强, 等. 水基含铝耐高温防腐蚀涂料[J]. 现代涂料与涂装, 2006, 9(7): 9-11.
YANG K, WANG G Z, WANG Z Q, et al.Aluminium Contained High-Temperature Anti-Corrosive Waterborne Coatings[J]. Modern Paint & Finishing, 2006, 9(7): 9-11.
[14] 井勇智, 金国, 李昕瑶, 等. 海洋工况下航空发动机冷端叶片的冲蚀损伤与防护概述[J]. 装备环境工程, 2021, 18(6): 17-21.
JING Y Z, JIN G, LI X Y, et al.Overview of Erosion Damage and Protection of Cold End Blades of Aircraft Engine under Marine Conditions[J]. Equipment Environmental Engineering, 2021, 18(6): 17-21.
[15] 关振威, 李静, 张玉忠, 等. 压气机叶片用耐冲刷防腐有机涂层的制备及性能研究[J]. 装备环境工程, 2021, 18(6): 36-41.
GUAN Z W, LI J, ZHANG Y Z, et al.Fabrication and Evaluation of an Organic Coating for Anti-Scouring and Anti-Corrosion Application on Compressor Blades[J]. Equipment Environmental Engineering, 2021, 18(6): 36-41.
[16] 张鹏飞, 杨瑞, 原玲, 等. 无机盐铝涂料及其性能研究[J]. 涂料工业, 2013, 43(8): 69-73.
ZHANG P F, YANG R, YUAN L, et al.Study on Properties of Inorganic Aluminum Coating[J]. Paint & Coatings Industry, 2013, 43(8): 69-73.
[17] 杨丽媛, 赵春玲, 邸士雄, 等. 几种结构钢和不锈钢的耐海洋大气腐蚀性能研究[J]. 装备环境工程, 2021, 18(6): 9-16.
YANG L Y, ZHAO C L, DI S X, et al.Corrosion Resistance of Some Structural Steels and Stainless Steels in Ocean Atmospheric Environment[J]. Equipment Environmental Engineering, 2021, 18(6): 9-16.
[18] 骆晨, 孙志华, 杨丽媛, 等. 海洋环境服役发动机腐蚀损伤分析及防护能力提升建议[J]. 装备环境工程, 2024, 21(5): 50-56.
LUO C, SUN Z H, YANG L Y, et al.Analysis on Corrosion Damage of Aero Engine Servicing in Marine Environment and Suggestions for Protection Improvement[J]. Equipment Environmental Engineering, 2024, 21(5): 50-56.
[19] 骆晨, 孙志华, 汤智慧, 等. 防护性有机涂层失效研究的发展趋势[J]. 装备环境工程, 2017, 14(8): 50-54.
LUO C, SUN Z H, TANG Z H, et al.Development Trend of the Research on Failure Analysis of Protective Organic Coatings[J]. Equipment Environmental Engineering, 2017, 14(8): 50-54.
[20] 骆晨, 李明, 孙志华, 等. 海洋大气环境中飞机的环境损伤和环境适应性[J]. 航空材料学报, 2016, 36(3): 101-107.
LUO C, LI M, SUN Z H, et al.Environmental Damage and Environmental Adaptability of the Aircraft in Marine Atmosphere[J]. Journal of Aeronautical Materials, 2016, 36(3): 101-107.
[21] 骆晨, 刘明, 孙志华, 等. 航空结构材料环境适应性研究进展及发展方向[J]. 装备环境工程, 2014, 11(6): 10-14.
LUO C, LIU M, SUN Z H, et al.Research Progress and Development Trend in Environmental Worthiness of Aeronautical Structural Materials[J]. Equipment Environmental Engineering, 2014, 11(6): 10-14.
[22] 杜楠, 田文明, 赵晴, 等. SO42-浓度对304不锈钢在NaCl溶液中点蚀行为影响的研究[J]. 材料工程, 2012, 40(7): 64-70.
DU N, TIAN W M, ZHAO Q, et al.Effect of SO42- Concentration on 304 Stainless Steel Pitting Corrosion in NaCl Solution[J]. Journal of Materials Engineering, 2012, 40(7): 64-70.
[23] 冯莉, 段慎修, 刘辉. 磷酸盐耐热涂料的研制[J]. 涂料工业, 2002, 32(8): 14-16.
FENG L, DUAN S X, LIU H.Development of Phosphate Heat Resistant Coatings[J]. Paint & Coatings Industry, 2002, 32(8): 14-16.
[24] 吴宗汉, 罗曼. 达克罗技术的应用及发展方向[J]. 中国涂料, 2008, 23(1): 55-57.
WU Z H, LUO M.Use and Development Trend of Dacromet Technology[J]. China Coatings, 2008, 23(1): 55-57.
PDF(2672 KB)

Accesses

Citation

Detail

Sections
Recommended

/